第二十四届全国青少年信息学奥林匹克联赛初赛 普及组 C++语言试题

竞赛时间: 2018年10月13日14:30~16:30

选手注意:

- 试题纸共有7页,答题纸共有2页,满分100分。请在答题纸上作答,写在 试题纸上的一律无效。
- 不得使用任何由子设备(加计管器、手机、由子词典等)或查阅任何书籍资

	料。
—,	单项选择题(共15题,每题2分,共计30分;每题有且仅有一个正确选项)
1.	以下哪一种设备属于输出设备: () A. 扫描仪 B. 键盘 C. 鼠标 D. 打印机
2.	下列四个不同进制的数中,与其它三项数值上不相等的是()。A. (269) ₁₆ B. (617) ₁₀ C. (1151) ₈ D. (1001101011) ₂
3.	1MB 等于()。 A. 1000 字节 B. 1024 字节 C. 1000 X 1000 字节 D. 1024 X 1024 字节
4.	广域网的英文缩写是()。 A. LAN B. WAN C. MAN D. LNA
5.	中国计算机学会于()年创办全国青少年计算机程序设计竞赛。 A. 1983 B. 1984 C. 1985 D. 1986

6. 如果开始时计算机处于小写输入状态,现在有一只小老鼠反复按照 CapsLock、 字母键 A、字母键 S、字母键 D、字母键 F 的顺序循环按键,即 CapsLock、A、

	Α.	· -	B. S		C.	D	D. a	
7.	节 A. (B. k C. k	点外,每一层上的 k ^{h+1} - 1) / (k - 1) (^{h-1}					即除最后一层无任何于共有())个结点。	2
8.	A. B. C.	下排序算法中,不 基数排序 冒泡排序 堆排序 直接插入排序	需要进	行关键字比:	较操作	作的算法	是()。	
9.	数最/ A. [B. [C. 2	至少需要 N - 1	次比较操	操作。则最坏	情况	下,在证	找出其中最大或最小的 家数组中同时找最大与 双整,[]表示向下取整)	
10.	从i 山, 有		「座庙, 百里有个:	庙里有个老老 老和尚在给 小和尚讲故	和尚ā 小和i 事····	在给小和 尚讲故事	尚讲故事: "从前有座: '从前有座: '从前有座山,山里	
11.	由 A. 6 B. 7 C. 8 D. 9	3	(构成的	简单无向连	通图	的个数是		
12.	T, A. 5 B. 1 C. 1	含有 10 个元素的 则 T / S 的值为(5 / 32 15 / 128 1 / 8 21 / 128		全部子集数为	J S, ∄	其中由 7	个元素组成的子集数为	J

S、D、F、CapsLock、A、S、D、F、······,屏幕上输出的第 81 个字符是字母

```
13. 10000 以内,与 10000 互质的正整数有()个。
  A. 2000
  B. 4000
  C. 6000
  D. 8000
14. 为了统计一个非负整数的二进制形式中 1 的个数,代码如下:
  int CountBit(int x)
  {
    int ret = 0;
    while (x)
    {
       ret++;
    return ret;
  }
  则空格内要填入的语句是(
  A. x >>= 1
  B. x \&= x - 1
  C. x = x >> 1
  D. x <<= 1
15. 下图中所使用的数据结构是(
     压入A
                         弹出 B
                     В
                     Α
 A. 哈希表
                                    D. 二叉树
             В.
               栈
                         C. 队列
二、问题求解(共2题,每题5分,共计10分)
1. 甲乙丙丁四人在考虑周末要不要外出郊游。
  已知①如果周末下雨,并且乙不去,则甲一定不去;②如果乙去,则丁一定
  去;③如果丙去,则丁一定不去;④如果丁不去,而且甲不去,则丙一定不
  去。如果周末丙去了,则甲_____(去了/没去)(1分),乙____(去
  了/没去)(1分),丁____(去了/没去)(1分),周末___(下雨/
  没下雨)(2分)。
```

包含数字 8 的数是指有某一位是"8"的数, 例如"2018"与"188"。

三、阅读程序写结果(共4题,每题8分,共计32分)

```
1. #include <cstdio>
   char st[100];
   int main() {
    scanf("%s", st);
    for (int i = 0; st[i]; ++i) {
      if ('A' <= st[i] && st[i] <= 'Z')
        st[i] += 1;
     printf("%s\n", st);
     return 0;
   }
   输入: QuanGuoLianSai
   输出:_____
2. #include <cstdio>
   int main() {
     int x;
     scanf("%d", &x);
     int res = 0;
     for (int i = 0; i < x; ++i) {
      if (i * i % x == 1) {
        ++res;
      }
     printf("%d", res);
  return 0;
   }
   输入: 15
   输出:
```

```
3. #include <iostream>
   using namespace std;
   int n, m;
   int findans(int n, int m) {
      if (n == 0) return m;
      if (m == 0) return n % 3;
      return findans(n - 1, m) - findans(n, m - 1) + findans(n -
   1, m - 1);
   }
   int main(){
      cin >> n >> m;
      cout << findans(n, m) << endl;</pre>
      return 0;
   }
   输入: 5 6
   输出:
4. #include <cstdio>
   int n, d[100];
   bool v[100];
   int main() {
     scanf("%d", &n);
     for (int i = 0; i < n; ++i) {
      scanf("%d", d + i);
      v[i] = false;
     int cnt = 0;
     for (int i = 0; i < n; ++i) {
      if (!v[i]) {
  for (int j = i; !v[j]; j = d[j]) {
          v[j] = true;
        ++cnt;
       }
     printf("%d\n", cnt);
     return 0;
   }
   输入: 10 7 1 4 3 2 5 9 8 0 6
   输出:
```

四、完善程序(共2题,每题14分,共计28分)

1. (最大公约数之和)下列程序想要求解整数n的所有约数两两之间最大公约数的和对10007求余后的值,试补全程序。(第一空2分,其余3分)

举例来说,4的所有约数是1,2,4。1和2的最大公约数为1;2和4的最大公约数为2;1和4的最大公约数为1。于是答案为1+2+1=4。

要求 getDivisor 函数的复杂度为 $O(\sqrt{n})$, gcd 函数的复杂度为 $O(\log \max(a,b))$ 。

```
#include <iostream>
using namespace std;
const int N = 110000, P = 10007;
int n;
int a[N], len;
int ans;
void getDivisor() {
   len = 0;
   for (int i = 1; ____(1)
                               <= n;
      if (n \% i == 0) {
         a[++len] = i;
         if (<u>(2)</u> != i) a[++len] = n / i;
      }
}
int gcd(int a, int b) {
   if (b == 0) {
       (3);
                     (4)
   return gcd(b,
int main() {
   cin >> n;
   getDivisor();
   ans = 0;
   for (int i = 1; i <= len; ++i) {
      for (int j = i + 1; j <= len; ++j) {
         ans = ((5)) % P;
   cout << ans << endl;</pre>
   return 0;
}
```

2. 对于一个1到n的排列P(即1到n中每一个数在P中出现了恰好一次),令 q_i 为第i个位置之后第一个比 P_i 值更大的位置,如果不存在这样的位置,则 $q_i = n + 1$ 。

举例来说,如果n = 5且P为1 5 4 2 3,则q为2 6 6 5 6。

下列程序读入了排列P,使用双向链表求解了答案。试补全程序。(第二空 2 分,其余 3 分)

数据范围 $1 \le n \le 10^5$ 。

```
#include <iostream>
using namespace std;
const int N = 100010;
int n;
int L[N], R[N], a[N];
int main() {
   cin >> n;
   for (int i = 1; i <= n; ++i) {
      int x;
      cin >> x;
      (1) ;
   for (int i = 1; i <= n; ++i) {
      R[i] = (2);
      L[i] = i - 1;
   for (int i = 1; i <= n; ++i) {
      L[_{(3)}] = L[a[i]];
      R[L[a[i]]] = R[ (4) ];
   for (int i = 1; i <= n; ++i) {
     cout << (5) << " ";
   cout << endl;</pre>
   return 0;
}
```